
BACHELOR THESIS

Herr
Jonas Bentke

Analysis and realisation of
acceptance criteria for pending

transactions in an
ethereum-blockchain environment

2017

Faculty of Angewandte Computer- und
Biowissenschaften

BACHELOR THESIS

Analysis and realisation of
acceptance criteria for pending

transactions in an
ethereum-blockchain environment

Author:
Jonas Bentke

Study Programme:
Angewandte Informatik

Seminar Group:
IF14wS-B

First Referee:
Prof. Dr.-Ing. Andreas Ittner

Second Referee:
Msc Steffen Kux

Mittweida, September 2017

Bibliographic Information

Bentke, Jonas: Analysis and realisation of acceptance criteria for pending transactions in an
ethereum-blockchain environment, 43 pages, 11 figures, Hochschule Mittweida, University of
Applied Sciences, Faculty of Angewandte Computer- und Biowissenschaften

Bachelor Thesis, 2017

Abstract

The Blockchain is a technology which has the capabilities to change the way, the world operates.
As promising as this may be, there are still many challenges which do not exist or are way simpler
to solve in conventional software solutions. Services which are offered over the blockchain suffer
from so called Block-confirmation-times where the customer simply has to wait till the transaction
is confirmed. In this paper possible solutions to that problem will be examined and challenges
that arise from the specific criteria of the Ethereum Blockchain will be analyzed.

I

I. Contents

Contents . I

List of Figures . II

1 Motivation . 1

2 Blockchain. 3

2.1 Historical Background . 3

2.2 Blockchain in general . 5

2.3 Ethereum . 6

2.3.1 Ethereum Virtual Machine . 6

2.3.2 State . 8

2.3.3 Transactions. 8

2.3.4 Block. 10

3 Pending Transactions . 11

3.1 Transaction Acceptance . 11

3.2 Acceptance of Pending Transactions . 12

3.2.1 General Problems with Transaction-propagation . 14

3.2.2 Problems with State Changing Transactions . 15

3.3 Other Excluding Criteria . 18

4 Solutions - How to Accept Pending Transactions . 19

4.1 Use-Case Analysis . 19

4.2 Application . 20

4.2.1 Ethereum Clients . 21

4.2.2 Implemented Transaction Pools . 21

4.2.3 Web3 . 23

4.2.4 Structure . 23

4.3 Implementation. 25

4.3.1 Demarcation Criteria / Falsifiability . 25

4.3.2 Procedure . 26

5 Conclusion . 31

I

Bibliography . 33

A Example Implementation . 35

A.1 Geth Implementation . 35

A.2 Parity Implementation . 38

II

II. List of Figures

2.1 Example: Double Spending . 5

2.2 Overview of the memory spaces in the EVM . 7

2.3 Mapping of addresses within the state . 9

3.1 Representation of the correlation between customer inconvenience and value of the

transaction. 13

3.2 Flow chart of a simple transaction . 16

3.3 Transaction-ordering through miner. 17

3.4 Example contract for autonomous and non-autonomous transactions . 17

4.1 Reference on used lists in the transaction pool . 22

4.2 Example structure of an non-autonomous transaction object containing two transactions. 24

4.3 Flow chart of the acceptance for pending transactions . 28

4.4 Flow chart of the acceptance for pending transactions with Parity’s trace functionality . . 29

Chapter 1: Motivation 1

1 Motivation

At the very least after the dramatic price increase of cryptocurrencies, even non techni-
cal people have probably heard of blockchain by now. With its unique ability to create
a trust less network of nodes, crypto currencies are taking the financial world by storm
with a market cap of more than 145 billion USD at the time of writing [06]. As many new
cryptocurrencies are emerging from this futile ground, everyone from startups to even
banks and big corporations start to take a big interest in this enabling technology [02].

The driving force behind crypto currencies is the blockchain, a cryptographically secured
ledger that is shared by everyone on the network. It consists of blocks, chained together
with the hash value of the previous block, thus making the whole chain temper proof.
First introduced by Satoshi Nakamotos whitepaper about Bitcoin [17], many different
Blockchains emerged into the space.

The Ethereum Blockchain is even in comparison with the Bitcoin Blockchain still in its
infancies. Running live since late July 2015 [10], it developed into a rapidly growing
cryptocurrency that attracts developers with its own programmable virtual machine. The
ability to code so called smart contracts creates endless possibilities to create and con-
trol value in a digital form.

Thanks to that rapid growth, more and more online retailers start to accept Ethereum’s
own cryptocurrency Ether, next to Bitcoin. Customers can pay without a middle man
and do so anonymous and without having to trust a third party to handle their money.
That not only saves money for the customer but also for the vendor.

Nevertheless, the blockchain technology comes with its own challenges. One of those
problems is the topic of this paper. Sending and receiving Ethereum transactions is like
in many Blockchains not instant and needs to be taken into consideration when dealing
with customers. While a customer expects that payment is instant, neither Bitcoin or
Ethereum can provide that service. Two major reasons for that issue are clearly at the
forefront of this topic: Long blocktimes and uncertainty about the current view of the
blockchain.

Long blocktimes mean that transactions send to the network need at least that amount
of time to be accepted as valid. That means currently around ten minutes for Bitcoin and
twenty-two seconds for Ethereum. To ensure that the transaction is valid and cannot be
changed again, the user has to wait for more blocks to confirm his transaction [21].

The goal of this work is to enable vendors to accept pending transactions with a certain
level of security, meaning to solve the issue of long blocktimes and network uncertainty.
This is done by implementing filters that check all incoming transactions for a set of

2 Chapter 1: Motivation

criteria given by the vendor.

Taking the age of Bitcoin, research on the topic is widespread and available [21] [14] [03]
[16]. Ethereum on the other hand is still lacking much of the research and attention that
is given to Bitcoin. This thesis gives an introductory entrance into the topic and explores
the already done research on the Bitcoin Blockchain and tries to apply those to the
Ethereum Blockchain. Following a basic explanation of the blockchain technology and
specific properties of Ethereum, the actual problem of accepting pending transactions
is discussed. Many solutions of the Bitcoin research is applied and introduced. To
conclude this thesis, an application is introduced that at least solves the issues under
certain conditions.

Chapter 2: Blockchain 3

2 Blockchain

This chapter explains the basic Blockchain-technology. It reflects on the roots and de-
velopment of blockchain and analyzes the general concept. Following, the Ethereum
Blockchain is examined and analyzed.

2.1 Historical Background

Ever since the Internet began, science has been dealing with a crucial topic. How can
you ensure that a digital document of any kind is the original? Stuart Haber and W.
Scott Stornetta have already examined in "How to Time-Stamp a Digital Document" [13]
this problem in 1991. The motivation for this paper was the problem of proving the
ownership of a digital photography [01]. They reported on two possible methods to sign
documents1 with a timestamp.

The first method is a central approach which transmits the hash of a document to a
timestamping server. The hash will then be signed together with a timestamp, an ID of
the sender and the hash of the previously signed document. The signed message will
then be transmitted back to the sender. As soon as someone doubts the ownership of
such a document, the owner can prove through the hash of his signed document and
the hash of the following documents that he was at least the first one to timestamp his
document. For someone to claim ownership for that document, he would have to provide
a signed document which contains an earlier timestamp.

For the second method Haber and Stornetta introduced a decentralized solution. The
client would send the hash of the document and his ID to k random participants of the
network. Everyone, who would receive the message, includes a timestamp, signs it and
sends it back. The proof of ownership would hereby come through the list of signed
messages. Assuming that the majority of the network is trustworthy, the chance of
sending the message to k/2+1 ill intendant nodes of the network is vanishingly low. This
method was later called the "Random Witness Protocol" [04].

One year later Haber and Stornetta published together with Dave Bayer the improved
versions of their concepts [04]. They proposed the idea "to merge many unnoteworthy
time-stamping events into one noteworthy event" [04, S. 2]. Using tree structures (today
called merkle trees) they brought down the number of verification steps significantly.
They achieved that through hashing the hash values of two documents together and
building a tree structure upwards. That way only one hash has to be verified for an

1 "Of course, digital time-stamping is not limited to text documents. Any string of bits can be timestamped,
including digital audio recordings, photographs, and full-motion videos." [13, p. 10]

4 Chapter 2: Blockchain

endless number of documents.

Following their improvements they unified their three different approaches to build a
system that could be seen as the origin of blockchain:

". . . we imagine that the three methods may be used in a complementary
fashion, as the following example illustrates. An individual or company might
use linear linking to time-stamp its own accounting records, sending the final
summary value for a given time period to a service maintained by a group
of individuals or parties. This service constructs linked trees at regular in-
tervals. The root of each tree is then certified as a widely viewed event by
using the random-witness protocol among the participants." [04, p. 6].

With the help of such a system can be proven who was the first to timestamp a doc-
ument. Effectively that means the authorship of the document will be verifiable. The
system cannot however verify the ownership of such signed document. This might not
be an issue for general documents or even pictures, given that in those cases an au-
thorship is enough to collect fees and such, but it is definitely not enough for digital
values.

The previously examined algorithms do not intend to provide a way to move the author-
ship from one person to another. The following example illustrates that case: Alice and
Bob make a business transaction in which Alice promises Bob the authorship of a digital
document. Alice already signed the document with a timestamp using one or all of the
previously examined algorithms. In order to transfer the authorship to Bob, Bob would
need to sign the document with his ID using the same algorithm as Alice. The issue
that arises now is that Bob has no way to prove that he has acquired the document from
Alice in a legal and honest fashion. To avoid that, Alice includes in her data a message
that states that she willingly transferred authorship to Bob. If a third person questions
Bobs authorship (which became now ownership), Bob can simply provide the plaintext
message. If the Hashes match, Bob proved his ownership.

Problems will arise as soon as Bob wants to confer the ownership to Carol. Bob and
Carol follow the same algorithm as Alice and Bob. Carol can now prove that she received
the ownership from Bob, and that Bob received his from Alice. The real issue arises
now if Bob decides to confer his ownership not only to Carol but also to Dave. This is
commonly known as a "Double Spending Attack"2. Dave can now prove that he has the
ownership as well as Carol. To avoid such a predicament, an algorithm is needed which
provides every participants with the same basis of information at all times.

Building upon the discoveries of Bayer at al, the whitepaper "Bitcoin: A Peer-to-Peer
Electronic Cash System" by Satoshi Nakamoto [17] was published. Not long time after

2 www.investopedia.com/terms/d/doublespending.asp

Chapter 2: Blockchain 5

Figure 2.1: Example: Double Spending

followed the first implementation of Bitcoin as an open source project.

2.2 Blockchain in general

This chapter covers the basic structure of a blockchain the way it is described by the
Bitcoin Whitepaper. It will not however explain Bitcoin specific implementations which
are not necessary to understand the Ethereum Blockchain.

One block in the blockchain contains as a bare minimum a timestamp, one or more
transactions and the hash from the previous block. This can prove that these transaction
existed at the moment in time where the block was created [17, p. 2]. If an attacker tries
to change a transaction in one block, he will unintentionally change all following blocks.
Responsible is the hash of the changed block. If the hash of one block changes, then the
next block, which contains the hash of the previous block, would not point to his original
predecessor anymore and thus the chain would be broken. This construct is similar to
the linked list described by Hebert and Stornetta [13, p. 5]. In order for this algorithm
to work on a peer-to-peer network, there needs to be some way to create consensus
between the participants of such network (peers).

Bitcoin delivers such an algorithm to ensure that the whole network has the same
blockchain. The first step to ensure that everyone in the network knows, or can know,
about each transaction which is send, is to propagate transactions throughout the whole
network. Therefore each transaction in the bitcoin network is public. In order to create
consensus about which transaction is going into the next block and is consequently valid
for everyone, the Bitcoin Blockchain relies on the proof-of-work algorithm [07], which is
at this moment the consensus algorithm for the Ethereum Blockchain as well . Proof-of-
work functions in a way that in order to create a block, the so called miner needs to find
a hash for that block, that matches a given difficulty. The difficulty is set by the number
of zeros, which need to precede the hash. In the block itself is a value named nonce,

6 Chapter 2: Blockchain

that can be changed by the miner in order to create a different hash. As soon as a valid
block is found, it is propagated to the network.

Everyone that receives the block can check for its validity by creating the hash of the
block. To give an incentive for miners to find new blocks and subsequently spend money
on the electricity necessary, each block is rewarded with a certain amount of bitcoin.

Everyone in the network can create the next block. If two or more nodes are able to
find the next block at the same time, the blockchain is split apart. Every node accepts
the first block that arrives as valid and chains it at the end of their blockchain. When
the other correct block arrives, it is rejected because it is in the eyes of the node not
valid (it does not contain the hash of the new block). Because other parts of the network
received the other block first, some work on the next block for the one, and some for
the next block of the other blockchain. This goes on until one blockchain is longer than
the other. Every member of the network is encouraged to accept the longest blockchain
as valid. If the node realizes that it is on a shorter chain, it rejects it and moves to the
longer one.

In order to change a transaction in the past, the attacker has as well to change all
following blocks or create new ones, until he created a longer chain as the currently
used one. The other honest miners however create blocks at the same time as the
attacker, which creates a race condition for the longest chain. In practice, the attacker
would need more than fifty percent of the computing power of the network.

2.3 Ethereum

Ethereum was developed as an alternative to Bitcoin and delivers a number of function-
alities which are not or only under great constraint implementable in Bitcoin. This chap-
ter examines how the general concept of blockchain is implemented into the Ethereum
Blockchain and what features are available that are missing in the Bitcoin Blockchain.

2.3.1 Ethereum Virtual Machine

The Ethereum Virtual Machine (EVM) [05] is defined as a quasi3 turing complete ma-
chine. It is a virtual state machine, which changes the state as soon as a command is
executed. The architecture of the machine is simple stack based and can be seen in
Figure 2.2, which shows a schematic overview.

There are two memory spaces in the virtual machine. The first is a volatile memory

3 ". . . the quasi qualification comes from the fact that the computation is intrinsically bounded through a
parameter, gas, which limits the total amount of computation done." [22]

Chapter 2: Blockchain 7

Figure 2.2: Overview of the memory spaces in the EVM

which is used for the execution of code. It is represented by a 1024 byte long array. It is
addressed by a 256 bit word which leaves the individual memory cell at 256 bit.

The second memory space is non-volatile and contains the current state of the virtual
machine. It is a word addressed word array and does not have a set length.

The code that is to be executed is stored in a read-only-memory.

A concept of two different types of addresses that is implemented in Ethereum empha-
sizes the advantage of such a virtual machine. An address is a 160 bit long asymmetric
key pair. Ethereum separates between externally controlled addresses and contract ad-
dresses. Externally controlled addresses (accounts) are controlled by the private key,
which usually represent users of the network. These accounts can hold Ether (the inter-
nal virtual currency of Ethereum) and sign transactions. Contract accounts (also called
smart contracts) on the other hand are controlled by the contract code. They can hold
ether as well, but do not have a private key and can therefore not sign transactions.
The code that controls the contract is written into the state of the address with a special
transaction that holds the contract code. Thus the contract code is immutable. Tasks for
the code are send to the address with a message call and run by the virtual machine.

To execute code or change the state of the EVM the user has to pay a fee. "In or-
der to avoid issues of network abuse and to side-step the inevitable questions stem-
ming from Turing completeness, all programmable computation in Ethereum is subject
to fees." [22]. Each opcode of the EVM is given a specific fee [22], which is taken by the

8 Chapter 2: Blockchain

creator of the block4. That creates native protection against potential DoS attacks and
general network abuse, but also to protect the user against several errors in his code,
like endless loops etc. Each transaction is given a limit on how much it is allowed to
spend. If the limit is reached, the transaction is stopped and all changes are reverted.
All fees are stated as gas. Gas is an internal unit which is given a gas price by the
sender of the transaction. It only exists within a transaction and can not be transferred
or sold.

Gas is paid in Ether. Ether serves as payment for gas and as reward for generating a
new block.

2.3.2 State

Ethereum is viewed as a complex state transition machine. Transactions which are
contained in a valid block, change the state of the machine. The state is a mapping
between addresses and address states. Each state combined creates the state of the
blockchain. Every state consist of four values:

nonce number of transactions send from this address.
balance The amount of Wei5 hold by this account.
storageRoot Merkle Patricia Tree [11].
codeHash The hash of the EVM code of this address. Is empty if it is not a contract

address.

Figure 2.3 shows the mapping between the addresses and the states of the addresses.

The current state of the EVM is hold in the non-volatile memory area. As soon as a
new block arrives at the node, all transactions from the block are executed to change
the state of the virtual machine.

2.3.3 Transactions

To get the state of the current blockchain, all transactions in every block need to be
executed in the right order6. Ethereum transactions are build in the following way:

nonce The nonce in a transaction is generally the same nonce as from the sender
address. If the transaction is send with a higher nonce then that, it can only be

4 The costs are calculated with the set gas costs for each opcode as described in the yellow paper and
the gas price which is set by the sender of the transaction. The miner can decide if the gas price set by
the user is high enough to cover his costs to take the transaction into his block

5 Wei is the smalest unit of Ether in Ethereum. [22]
6 The state is changed after each valid block. If someone joins the network at a later point in time, he

calculates the current state in that way

Chapter 2: Blockchain 9

Figure 2.3: Mapping of addresses within the state

executed when the nonce of the address becomes the same value.

gasPrice The amount of Wei that is to be paid per unit of gas.

gasLimit The maximum value of the transaction. When the value is reached before
computation is done, an error occurs. If an error occurs this amount of gas will be
burnt and all state changes will be reverted.

to The address of the receiver.

value The amount of Wei that is to be sent with the transaction.

data A byte array that contains information about the code that it wants to call from a
contract. If no contract is called, it is not used by the EVM. Every byte raises the
cost of the transaction. By definition, the array is unlimited in size, but in practice
limited by the block gas limit.

If the transaction is used to create a new contract, the structer of it changes the following
way:

init Init is used instead of the data field. It contains a limitless byte array which contains
the code of the transaction that is supposed to be created. It "is an EVM-code
fragment; it returns the body, a second fragment of code that executes each time
the account receives a message call (either through a transaction or due to the
internal execution of code). init is executed only once at account creation and gets
discarded immediately thereafter." [22]

10 Chapter 2: Blockchain

2.3.4 Block

A block in the Ethereum Blockchain contains 3 parts: a blockheader, a list of transactions
and a list of ommer7.

The blockheader consists of a number of hash values, such as the hash of the previous
block, the hash of the ommer list, the root of the transaction trie and the root of the
trie of the transaction receipt. Transaction receipts are the result of a transaction. They
contain the state before the transaction, the amount of used gas, logs and the bloom-
filter for the logs. Next to those hash values are different meta-data such as the block
difficulty, the block number, the gas limit, the actually used gas, a timestamp and a
mixed hash which is used together with the nonce to create the hash for the consensus.
Ommer, also known as uncles, are blocks that stand next to the previous block (have the
same parent). Ommer are necessary to reward and think of the miner that created the
correct block but did not get accepted fast enough by the network. The block difficulty
uses these blocks to adjust the difficulty of the proof-of-work algorithm. Miners receive
rewards for ommer.

7 Gender-neutral term meaning "sibling of parent", see http://nonbinary.org/wiki/Gender_neutral_language#Family_Terms

Chapter 3: Pending Transactions 11

3 Pending Transactions

After reviewing the most critical parts of the Ethereum Blockchain, it is important to
note one of the problems that arises through the consensus itself. While it might not
be as troublesome to wait for a new block to be generated when processing normal
transactions, it definitely opens up problems for fast transactions8.

Viewing a use case such as an ATM withdrawal, it might seem unacceptable for a
customer to wait for potential 120 seconds9 till the transaction is accepted into the
blockchain. Given a more acceptable use case such as ordering a product online, the
blocktime does not play a big role. The question arises when it is actually acceptable
to wait and at what point it might even be necessary to accept pending transactions10.
In order to discern what might be acceptable, the following chapters will discover pos-
sible attack vectors, different use case scenario and an implemented way for accepting
pending transactions for payment, while minimizing the risk involved.

3.1 Transaction Acceptance

In order to know whether a transaction is ready to be accepted, it needs to be discussed
how possible attack vectors might interfere with that. Given the shared base idea of
blockchain between bitcoin and ethereum, there are some important differences in the
actual implementation which need to be shown in more detail.

The most prominent group of attacks are widely called double spend attacks. While
Satoshi Nakamoto claims in his whitepaper that this problem is widely solved in bitcoin,
he also states that "the system is secure as long as honest nodes collectively control
more power than any cooperating group of attacker nodes" [05]. While this is true for a
double spend attack that relies on creating a hidden branch of the current blockchain,
and publishing it after the vendor confirmed the transaction11, it does not hold against a
double spending attack that relies on a race condition. Karame et al expand on that at-
tack in their paper "Two Bitcoins at the Price of One? Double-Spending Attacks on Fast
Payments in Bitcoin" [14] and explain a scenario where the attacker sends a transaction

8 Fast transactions refer here to transactions that most of the time involve face to face trading, where it is
uncommon to have a long payment process opposed to paying for and receiving a certain good.

9 The current Blocktime reaches 23 seconds on average, but can be as long as 120 seconds. It depends
on when a miner finds the next valid block.

10 A pending transaction described here, is a transaction that has been published to the network, but is not
yet accepted into the next block. The reasons for that vary from being invalid to not having a lucrative
gas price set.

11 As proven by Meni Rosenfeld in his paper "Analysis of hashrate-based double-spending" [21], it is
secure, given that only a certain percentage of hashpower is controlled by the attacker and the vendor
waits n blocks for confirmation.

12 Chapter 3: Pending Transactions

T to the vendor and sending a transaction T’ to the miner. Given enough proximity to the
vendor and potential help from attacker nodes, the transaction send to the vendor can
become void after the next block. The Bitcoin client rejects any transaction that contra-
dicts a previously collected transaction so that the attacker can send out T’ with help of
other attacker nodes faster to the network. If the vendor accepts pending transactions,
the attacker can get away with the goods received, and T’ will most likely be accepted
into the next block annulling T.

Because Ethereum is build upon a blockchain as well, it has the same attack vector
as just discussed for Bitcoin. Taken into account that the blocktime for Ethereum is
much lower than for Bitcoin, it is more difficult but still possible to run such an attack.
For fast transactions it is still required to have a nearly instant confirmation, e. g. in a
supermarket where everyone else would have to wait in line, while the cashier is waiting
for the block-confirmation.

While the bitcoin client simply rejects transactions that contained spend coins, Ethereum
does not rely on unspent transaction outputs12. As explained in chapter 2.3.2 each
address has its own state, which results in nodes simply relying on the previous state to
check if a transaction is valid. This is done by simply checking the balance of the account
at the previous state and checking if the nonce of the transaction is equal to the nonce
of the address +1. Transaction with a higher nonce are stored for later and transaction
with a lower nonce get rejected. Reviewing the two most commonly used clients for
Ethereum, Geth and Parity, the way they implement the transaction pool for pending
transactions shows that instead of rejecting incoming transactions with the same nonce,
they check which transaction has a higher gas price. This is a critical step. In the
previously explained attack vector, the attacker would just have to send a transaction
with a higher gas price and would in that way overwrite the old transaction. This fact
implies that the vendor can never be sure that a pending transaction is going to be
executed or is being overwritten.

3.2 Acceptance of Pending Transactions

The time that is acceptable to wait for confirmation depends on two factors: the value
of the transaction and the inconvenience for the customer. Figure 3.1 shows a matrix
representing the correlation between inconvenience and time and which influence it has
on pending transactions.

For high value pending transactions with no or only low inconvenience for the customer,
it is a good practice to reject them. This might be the case at an online shop. Given that

12 An unspent transaction output (UTXO) is a value of bitcoins that has not yet been assigned to be a
transaction input. Bitcoin transactions are only valid, if the transaction output is backed up by enough
UTXO. Following that logic, all Bitcoins can be traced back to the time they were mined.

Chapter 3: Pending Transactions 13

Figure 3.1: Representation of the correlation between customer inconvenience and value of the
transaction.

the customer has to wait at least on day for the package anyway, the blocktime will not
make much of a difference. Another example would be, after eating at a restaurant. In a
space where the waitress will usually take your credit card into the back room anyway, it
will not represent an inconvenience to wait for the next block to be confirmed. While it is
an issue with blocktimes like bitcoins, it is not for the comparatively low time necessary
to wait at the Ethereum Blockchain.

For transactions that have a low value and would create a big inconvenience for the
customer, it is reasonable to accept pending transactions. The loss of the transaction
would only be the value of the transaction itself. That cost is still comparatively low to
the cost of a bad customer experience. In an article called "The Value of Customer
Experience, Quantified" [15], Dr Peter Kriss shows that " . . . customers who had the
best past experiences spend 140% more compared to those who had the poorest past
experience.". Given that statement it is in the best interest of most companies, in regards
to the low transaction value, to accept pending transactions for the sake of the customer.
An example would be a low cost renting experiences like gaining access to wifi for a
couple of minutes. In that example it would be unreasonable to wait for at least the next
block when the actual usage only takes a couple of minutes.

The other two cases, low value and low inconvenience or high value and high inconve-
nience, depend on the use case. Looking at a low value and low inconvenience process,
the tendency might be to wait for the next block. On the other hand, considering the use
case of an fully automated system, it might not be practical to wait, if it would slow down

14 Chapter 3: Pending Transactions

the whole process as such. Looking at a high value high inconvenience processes, the
tendencies gos towards rejecting pending transactions. But again, there might be use
cases where that is not necessarily the case, for example when it is not likely that the
customer will run a double spending attack, like at a charity fundraiser event.

Taken into account these economic factors, the next section will give a technical per-
spective on the matter.

3.2.1 General Problems with Transaction-propagation

The main issue that needs to be looked at is the problem of the network topology. Given
the fact that Ethereum is build on top of a peer-to-peer network, there is no guarantee
that the vendor node will even receive the customer transaction. If the customer is
broadcasting the transaction from a network position on the opposite site of the vendor,
the next block might be mined before the transaction can even be pending at the vendors
node [16]. In that instance the customer could be asked to send his transaction directly
to the vendor node, which would open up the vendor for common double spending
attacks13. Closing the incoming connections, ". . . essentially prevents the attacker from
achieving one of the necessary conditions required to successfully perform a double-
spend attack which is to directly connect to the targeted vendor." [20]. Remembering
that it needs to be considered if it is even worth the risk to accept pending transactions.

Another problem arises when the transaction from the customer is actually pending in
the transaction pool of the vendor. He is now able to check if the transaction is valid
and start his service. As soon as the customer receives the service, he can propagate
a transaction that has the same nonce as the transaction before. To ensure that the
new transaction overtakes the old one, he might have helper nodes which propagate the
same malicious transaction over the network. Each node will replace the old transaction,
if the new transaction has a higher gas price. If the new block contains the malicious
transaction, the vendor lost against the attacker. To defend himself against such an
attack, Karame et al suggested two possible solutions to that problem.

First they recommended a listening period, where the vendor waits for a few seconds
and listens for malicious transactions. But given that, the attacker could just wait until
the period is over, they suggested another method, which is to deploy observers over
the network, to warn the vendor node, in case there is a second transaction with the
same nonce propagated. These observers14 listen for transactions on the network and
alert the vendor in case of a positive finding. Because they are widely spread over the

13 Accepting transactions directly to the node, allows an attacker to start a double spend attack as de-
scribed in chapter 3.1 but also opens the node up for an Eclipse attack [03]. The direct impact on known
topology is explained by Matthias Lei in "Exploiting Bitcoins Topology for Double-spend Attacks" [16]

14 There is an improved version of these observers described by Podolanko [20]. They are "âĂęa hybrid
of observers and the peer alert system".

Chapter 3: Pending Transactions 15

network, the chance that they will pick up such a transaction is in fact higher as if the
vendor would just listen himself.

The short blocktime from ethereum makes it in this case not only harder for the double
spend attacker but also harder for the defender of such an attack. Listening for a period
of time for malicious transactions, either with observer or with the vendor node itself,
might just take longer than waiting for the next block. To that effect must the attacker
deploy his malicious transaction in the timespace, between the listening period and
before the next block is mined. The same is valid for the vendor who has to listen for
malicious transactions long enough to be certain there is no second transaction from
the attacker and not to long, else the inconvenience level will be to high for all friendly
customers or the next block will be mined anyway.

A simpler workaround for the double spending in the Ethereum Blockchain is to make
use of smart contracts. Before the actual act of purchase, the customer deposits a
certain amount of Ether into a smart contract. The vendor can now accept pending
transactions from the customer without fearing a double spend attack. In case a trans-
action is rejected or is invalid, the vendor keeps the deposit. This moves the risk and
responsibility from the vendor to the customer. The smart contract can be a simple
multi-signature contract15 which needs a trusted third party to decide in the case of a
dispute. The big disadvantage of such a workaround is the fact that the customer would
need to open a deposit with each vendor he plans on trading with.

3.2.2 Problems with State Changing Transactions

Each transaction in the Ethereum Blockchain changes the state of the EVM. Following
it will be differentiated between two kinds of transactions:

autonomous transactions These transactions are independent from any action of other
accounts16. To this category count transactions which only transfer ether from one
address to another and the most simple function calls. Simple function calls are
described here as calls that can be done independent of any other call to that
contract (except suicide).

non-autonomous transactions Every transaction whose outcome can be altered by
another transaction is a dependent transaction. That category includes most func-
tion calls in more complex smart contracts. One simple example would be that
transaction A is depending on permissions given by transaction B. If transaction

15 A Multi-signature contract, or short multisig, is a smart contract with functions that can only be executed
when a set number of participants agree to do so. An example would be a savings account that can
only move money when two of three participants agree upon it.

16 Exempt from this rule are transactions send by the sender himself that would move funds from the
account in a way, that the transaction in question does fail because of insufficient funds. These cases
were discussed in detail in the previous chapters. In the following discussion we assume that the sender
account has always sufficient funds.

16 Chapter 3: Pending Transactions

A is taken into the block before transaction B, it will not have the necessary per-
missions and subsequently fails.

To accept autonomous transactions is relatively straightforward. As soon as such a
transaction is received by the vendor node, the nonce will be checked. If the nonce is
higher then the current nonce of that address plus one, than there are pending transac-
tions which need to be executed beforehand. In the case that there are none, or that all
transactions are already executed it is tested if the transaction is valid17 and pass it on
for execution. If there are transactions which are not yet received by the vendor node,
the pending transaction is put on hold till they arrive. This process is shown in Figure
3.2.

Figure 3.2: Flow chart of a simple transaction

Far more problems arise when trying to accept non-autonomous transactions. While it is
not important for autonomous transactions to wait for other transactions to be processed
beforehand, non-autonomous transactions suffer from the uncertainty that arises from
the algorithm that decides the order of the transactions in a block.

When a new block is being put together for the blockchain, the creator of the block de-
cides what transactions in which order will be executed. Looking at a simple example
where 2 parties have to enter a value which will then be added together by either one of
those parties. If the order in which the transactions are executed would be set, so that
the final product will be calculated after the transactions of the two parties, everything
will seem ok, but if the product calculation will be executed before one or both of the
parties transactions, then the result will become incorrect (see Figure 3.3). Even know-
ing what strategy the miner might use to determine the order of transactions, makes it
still uncertain, if he even has the necessary transactions in his transaction pool.

17 The definition of a valid transaction is described in the Yellow Paper [22]

Chapter 3: Pending Transactions 17

Figure 3.3: Transaction-ordering through miner.

Figure 3.4 shows a contract with two functions, an autonomous function changeOwner(
address owner) and a non-autonomous function set(uint paranumber). The autonomous
function is changing the variable owner and can be called by anyone. Calling this func-
tion is possible, no matter what other transactions might do with the variable or the
contract. In contrast, the non-autonomous function relies on the owner variable. Even if
the user sends two transaction, changeOwner and set, in succession, it is not assured
that the outcome of his first transaction will not be overwritten with a transaction from
another account.

Figure 3.4: Example contract for autonomous and non-autonomous transactions

This problem can be broken down into a single race condition. Between the moment
where the transaction is send and the actual validation through the block, there is time
for other transactions to change the state. Conventional programming languages like C
deliver constructs like a mutex to prevent such behavior. Because there is no such thing
in the EVM Opcodes, every transaction should be atomic in itself. Given, that this is not

18 Chapter 3: Pending Transactions

alway possible18, compromises are necessary.

3.3 Other Excluding Criteria

Blockchains present other environmental risks which can influence the criteria of ac-
cepting pending transactions. A major point is the chance of a fork. Forks happen when
a split occurs in the blockchain itself. There are two kind of forks, a soft fork and a hard
fork.

A soft fork happens when two valid blocks with the same parent block are propagated
into the network. Some nodes will accept the one and some the other block. The
protocol views always the longest chain as the valid one. Miners will now mine on the
block they received until they find a new block. Every node will now jump on the chain
that is the longest.

While a soft fork is happening on a regular basis, it provides some problems for accept-
ing transactions in general. A vendor might accept a transaction and is then continuing
on one particular fork. If his fork is the one that is going to be rolled back, all transac-
tions since the beginning of the fork are invalid. This problem is not specific to pending
transactions as such, except that systems for fork detection do not fully apply to pend-
ing transactions. The transaction between a customer and the vendor occur in that case
before a fork can be discovered. As soon as the fork is detected, the transaction should
be canceled or at least put on hold till the fork is resolved.

Hard forks are changes in the protocol itself and require an update of the clients. This
kind of fork is not going to be resolved in the future but is permanent. Changes in
the protocol include lengthy discussions between the core developers and are known
to occur in advance. This will rarely affect pending transaction handling if the vendor
prepares for that case. The only case where it could affect the vendor is if a change in
the protocol would make the transaction invalid. Because both chains are constant after
the fork, there is no loss in value for the vendor, as long as he runs a full client on his
own.

Another financial risk is a DOS attack on the blockchain itself. If the vendor accepts
a transaction but the network does not respond or all blocks are full, then he will only
be paid as soon as the transaction is actually taken into a block. While a transaction is
generally accepted or rejected relatively fast, in this case he could wait days or longer.

18 Even if it is a simple accepting of a payment from a smart contract, there is no way to tell what will
happen to the balance between providing the service and the block confirmation

Chapter 4: Solutions - How to Accept Pending Transactions 19

4 Solutions - How to Accept Pending
Transactions

A use-case analysis is performed and previous findings are applied. Criteria to accept
pending transactions are created and taken into account while building an architecture
for an implementation. A short analysis of the current implemented transaction pools
provides a necessary insight into what kind of transactions need to be watched. A flow
chart is shown that is implemented and explained at the end of the chapter.

4.1 Use-Case Analysis

The implementation of a possible solution is build around the following use case:

A customer wants to use, rent or buy a service from the vendor. The vendor is connected
to the Ethereum Blockchain and runs his own node. In order to start the process, the
customer sends a transaction with the necessary function call from his device to the
Ethereum Blockchain. As soon as the transaction is propagated to the node of the
vendor, it will verify the transaction. If it is valid, the process will be started.

There are several things to consider in that use case.

1. At what point is a transaction valid for the vendor?
2. What happens, when the transaction is not included into the next block?
3. What devices or things can be used, rented or sold with that system?

The validity of a transaction is defined in the yellow paper [22]. It checks if

• the transaction is well formed
• the transaction is signed properly
• the nonce is valid
• the gas limit is greater or equal to the intrinsic gas used
• the balance from the sender account is high enough to pay the upfront cost.

These rules of validity are implemented by the Ethereum client itself. In this use case,
validity is seen in a wider scope. To accept a pending transaction, the vendor must be
sure that this transaction will successfully execute. If the transaction is an autonomous
transaction, a simple check against the current state is enough to accept it. That could
be the case if the customer is buying a service. In most cases, the transaction will be
non-autonomous, which requires additional checks for validation. The reason that most
of those transactions will be non-autonomous is that the service generally supports only

20 Chapter 4: Solutions - How to Accept Pending Transactions

a finite number of users. Because of that the transaction can fail, if another user’s trans-
action is taken into the block faster. These additional checks defer from use case to use
case. A possible solution could be to check the data portion of the transaction, provided
the function call is known to the vendor. Analyzing all other pending transactions in the
transaction pool can give a certain amount of security.

One option for the problem of transactions not being taken into the next block would
be to stop the process immediately, but as shown in 3.2.3, the reason for that must not
always be malicious. To assure that the service is not stopped for the wrong reason, the
transaction has to be tested for validity again. If it is still valid, the process can continue,
if not, the process needs to be stopped.

Seeing that services are going to stop if the transaction is not accepted into the next valid
block, it needs to be considered what kind of devices can be offered while accepting
pending transactions. A simple case of renting a lock would for example not be applica-
ble as it is. The customer would be able to take the locked object even if the transaction
is not mined while the vendor has no control over the rented object. More damaging
for the vendor would be the case where a renting request from someone else would be
accepted instead. Both customers would have a right for the rented object. Safeguards
as discussed in 3.1 need to be put in place to make it reasonably safe for the vendor.
Services on the other hand like electricity can be sold without those safeguards. Taking
a simple charging station, the electricity would simply stop if the transaction failed. No
other customer would be able to practically rent the charging station, because only one
car can be connected to the socket at the same time. The financial loss for the vendor
is small and the customer can be blocked until the losses are paid for.

The following requirements are defined for accepting pending transactions:

1. Double spending protection is in place either through a deposit or with a price that
is acceptable for the vendor to risk

2. The product of the vendor is applicable for the acceptance of pending transactions

3. The transaction is autonomous or there are additional steps in place to verify non-
autonomous transactions

4.2 Application

After accepting those criteria, a application is created that applies all findings from the
previous chapters. This is done by analyzing needed third party software and its influ-
ence on those criteria. The solution is represented through a flow chart diagram.

Chapter 4: Solutions - How to Accept Pending Transactions 21

4.2.1 Ethereum Clients

An Ethereum Clients role is to connect to the Ethereum network by opening up a node.
In order to participate in the network, the client needs to implement all rules of the proto-
col defined in the yellow paper [22]. The protocol is enforced by a set of software tests,
which run to validate the correctness of the client. Nevertheless, the actual implemen-
tation details are different from client to client.

At the time of writing there are two major implementations of the Ethereum Client.
Geth [08], which is developed by the Ethereum foundation provides a Go language
implementation. Parity [18] on the other hand is developed by Parity Technologies and
is written in Rust. Most commonly used is the Geth client. It is used on around 76% of
the nodes. With around 16% follows Parity [12].

Both clients are open source and free to use.

4.2.2 Implemented Transaction Pools

Because the application relies so much on the handling of transactions through the
client, the implementation needs to be examined further.

Both, Geth and Parity, implement the transaction pool in a similar fashion. The following
is a simplified description of the Geth transaction pool.

The Geth transaction pool consists of a couple of lists which sort the transactions into
different categories. Two lists are hold to separate transactions that are executable and
transactions which are not. Executable transactions are stored in the pending list while
non-executable transactions are stored in the future list. A transaction is executable
when all previous transactions are in the list of pending transactions as well or the nonce
is indicating that it is in fact the transaction which is to execute next. All transactions that
do not fulfill this requirement are stored in the future queue. Geth has a few additional
lists for lookup purposes, which do not hold however any transaction that are not in
pending or future list. They are separated into a list for all transactions known by the
node, a list of local transactions and a list of transactions sorted by price. Figure 4.1
shows what lists are referenced while adding a new pending transaction to the pool.

As soon as a transaction is received by the network, it will be validated against the
Ethereum protocol and additional tests specific for Geth. Part of these tests check if

• the transaction is signed properly
• the transaction is not exceeding the block gas limit
• the transaction does not have a lower nonce then the current state nonce of the

sender

22 Chapter 4: Solutions - How to Accept Pending Transactions

Figure 4.1: Reference on used lists in the transaction pool

• the sender of the transaction has enough funds

After these checks, the transaction is attempted to be put into the future list of transac-
tions. If the transaction is known by the node, it will be dropped. When the future list is
already full, then the most unprofitable transaction will be discarded. In case the trans-
action is replacing a transaction (having the same nonce), then the transaction will be
checked against a price bump. The price bump is set by the node owner and describes
how high the price difference must be between an already existing transaction and a
new incoming transaction. Is the price bump met, the transaction will replace the old
one.

An additional function is called to promote transactions from the future list into the pend-
ing list. All transactions that became invalid (transactions that have a too low nonce, or
transactions that became to costly, meaning that the balance of the transactor became
too low or the gas limit became unacceptable) will be discarded and transactions that
became executable will be added into the pending list. The mining strategy to decide
which transaction is taken into the block at what point is partly decided by these lists.
Geth implements it in a way that it groups all transactions from the pending list according
to there sender address into heaps. Within the individual heaps, the transactions are
sorted by nonce. Now the Block is put together by iterating over the heaps and taking
the transaction on top with the highest gas price. The need for such a simple algorithm
comes from the necessity to save time, in order to mine faster.

Parity has a similar list system that only differentiates through the order in which it pro-
cesses the incoming transactions. One big difference between Geth and Parity is that
Geth has an implemented miner, whereas Parity does not. Because of that the list of
pending transactions has a different pattern. Where Geth groups the transactions to be
mined, Parity just lists them in a chronological order. The miner on a Parity node has to
sort the transactions himself.

Chapter 4: Solutions - How to Accept Pending Transactions 23

4.2.3 Web3

In order to access the functionalities of the Ethereum Clients, they open up a RPC
interface through which important calls can be executed. The Web3 library [09] is a way
for JavaScript applications to access these calls. It can connect to the client in different
ways, such as http requests, through a web socket or through an IPC file. As soon as a
connection is established, the user can now access RPC functionality through the web3
object. This does not only allow an easy access to core Ethereum Client features, but
makes it easier to handle smart contracts through abstractions.

In this application, the subscribe function is used to listen to every incoming pending
transaction. The function call web3.eth.subscribe(’pending’) opens up an event handler
which fires when a transaction becomes pending. As described above, the actual trans-
action pool is separated into different lists. The event handler is only activated, when
a transaction moves into the pending list, either from the future list or directly. That im-
plies that listening to this list only returns transactions that are executable in your current
node. Taken into account that the local node does not always receives all the pending
transactions that are in the network, a transaction might be in the future list locally, but
actually pending in the node of a miner. Filtering those transactions that are in the fu-
ture list locally but are pending in miner nodes is impossible, given the fact that it is not
known from where the next block will come.

Other functionalities of the Web3 object include abstract objects for smart contracts, util-
ity functionality to create and send transactions and catching events from the blockchain.

4.2.4 Structure

The discussed methods are implemented in a Node.js module. It requires at least two
parameters for execution. These parameters describe autonomous and non-autonomous
transactions. In order to call this function, the user needs to know what transactions in
his system are autonomous and which are non-autonomous. Autonomous transactions
are passed on by a simple array with a unique signature of the contract function that is
called19. Non-autonomous transactions are passed in by an object. Figure 4.2 resem-
bles an example build for such an object. Each non-autonomous transaction is identified
by its signature. Each signature contains a list of transactions it depends on including
the sender and receiver address.

Based on these parameters, every incoming pending transaction will be checked. If the
transaction is an autonomous transaction, the function estimateGas20 will be called to

19 This signature consists of the first 32 bit of the functions hash value. Each function call contains this
signature in the beginning of the transactions data part.

20 This function estimates how much gas this call will need to execute. In a case of an error, all gas will be
used up. This means that when estimateGas returns the same value as the gasLimit of the transaction,

24 Chapter 4: Solutions - How to Accept Pending Transactions

Figure 4.2: Example structure of an non-autonomous transaction object containing two
transactions.

discern if the transaction is executable against the current block.

In case that the transaction is non-autonomous, the pending list from the transaction
pool will be checked against the parameter list. Only if every transaction from that list is
in the pending pool or previous blocks, the pending transaction can be accepted. The
accepted transactions are temporarily stored. As soon as the next block is received,
all accepted pending transactions need to be in that block. If that is not the case, but
the transaction is still valid as defined, then the service continues. If it is not included
and the transaction is not valid anymore, or the transaction in the block failed, the pro-
vided service will be stopped. Figure 4.3 shows a complete flow chart diagram of this
process.

One problem in this process is the fact that it cannot separate between required transac-
tions that are in the pending pool and transactions that are required but already mined.
The issue lies in the estimateGas21 function. This function can only be called against
the current state and not against a pending state. Either all required transactions are
in the previous blocks which will let estimateGas finish successfully or all are in the
pending list which will let the implemented algorithm finish successfully.

it is probably going to fail.
21 estimateGas runs the passed transaction against the current state without changing it. In that way it

can say how much gas will be used by the function. Ethereum transactions consume all gas when they
throw an exception. That allows the forecast that if all gas is used by the transaction, then there was
probably an error.

Chapter 4: Solutions - How to Accept Pending Transactions 25

A different approach is possible through an implemented method provided by the Parity
client. Parity allows the user to trace transactions and to analyze the outcome accord-
ingly. This allows the execution of multiple transactions against the current state. If the
previous transaction would fail, the vendor knows that he should not accept the pending
transaction in question. Implementing this method requires the separation between two
sub groups of non-autonomous transactions.

• The first subgroup requires transactions that are only from one sender address.
The vendor has to check the nonces of those transactions to ensure that there
is no gap in between. Only double spending attacks are applicable in order to
intercept the acceptance process.

• The second subgroup are transactions that require transactions from other ac-
counts. Because the vendor has no influence on the order in which the transac-
tions will be mined, the chance that the prediction fails is a lot higher than in the
first subgroup.

With the implementation of Parity’s trace system, the aforementioned problem with the
location of the required transactions can be solved by calling the trace functionality with
all required transactions that are already in the pending list. If the trace call is suc-
cessful, all other required transactions are in the previous block. When it fails, required
transactions are missing. An updated flow chart can be seen in Figure 4.4.

This implementation is in that way superior to the previous one, that it does not always
has to guess if a transaction will go through. Subgroup one is certain to execute suc-
cessfully, given that no double spend attacks are expected and subgroup two can be
determined in more detail.

4.3 Implementation

The previously created flow chart is now implemented into a nodejs module. Both ver-
sions, one for Geth and the other for Parity are explained. Demarcation criteria are
set.

4.3.1 Demarcation Criteria / Falsifiability

The provided implementation of the given solution is a proof of concept that does not
intend to solve all problems spoken of before. The intend is to provide an application
that can within reasonable borders accept unconfirmed transactions. It is only functional
if the contracts that are watched over are known to the user. For that reason is the proof
of concept based on the smart contract shown in figure 3.4. Only the Geth and the Parity
client are supported and need to run with an open IPC (inter process communication)
endpoint on the system. The Web3 module is at the time of writing still in beta phase.

26 Chapter 4: Solutions - How to Accept Pending Transactions

For that reason is the introduced implementation for the Parity client not functioning
as expected22. Further bug fixes of the Web3 module are needed to run that code
successfully.

4.3.2 Procedure

The concept is implemented as a Node.js module written in JavaScript. It connects to
the Ethereum Client via web3js. Through the web3 functionality of subscribe, the web3
object listens to every transaction that enters the pending list of the underlying client.
It then checks it against the address of the account that is supposed to be watched.
Following the concept shown in the flowchart (Figure 4.3), it checks if the transaction
is valid by deciding between autonomous and non-autonomous transaction. For au-
tonomous transactions it runs estimateGas call to find out if it will execute. If all the gas
is used, then it throws an error. Non-autonomous transactions will trigger a sub function
which retrieves the pending list from the client and checks if all required transactions are
received by the node.

With the Geth implementation (Figure 4.3), it iterates over all transactions in the pool and
compares them with the list of required transactions. In case all required transactions
are in the pool, it will return true. If not, then estimateGas will be called to determine
if the transaction could be executable anyway. As shown before, this does not bring a
reliable result as shown in section 4.2.4.

Parity is providing the solution with a RPC call named trace_callMany which accepts an
array of transactions to execute against the current state. It returns a trace which holds
informations about the changes done in the state, gas used and further metadata [19].
By executing all dependent transactions in the right order and checking the trace, it can
be predicted to a certain degree if the transaction will go through. Further this allows
to trace only a subset of required transactions and saves computational time down the
line when it comes to checking previous blocks for required transactions. The aforemen-
tioned task of checking old blocks would be difficult to implement, because it cannot be
determined which transactions are from an older transaction request and which are the
ones actually looked for. With trace_callMany in place, this is not necessary at all. All
available required transactions can be run against the state, where the last one is the
actual transaction that needs to be confirmed. If the trace shows that this transaction
will execute successfully then all required transactions that are not in the pending list
are already mined.

To achieve that, the implementation will iterate through the pending list and store every
required transaction that is available. This array will be passed to the trace function

22 The subscribe functionality for pending transactions is not working for the Parity Client version 1.7.0
and web3 version 1.0.

Chapter 4: Solutions - How to Accept Pending Transactions 27

which will then determine if the transaction will execute or not (Figure 4.4).

In case it is decided that the transaction is ready to be accepted, it will be stored in a
separate array. This is necessary to determine if the transaction was in the end actually
taken into the next block. Transactions that are not deemed to be acceptable will be
stored as well to check them again as soon as another transaction has come in. They
are stored in the potential list. In case a new block arrives, the list of accepted transac-
tions will be checked against this new block. This is done by getting the transaction by its
hash from the blockchain and using a side effect of pending transactions. Each pending
transaction is missing the blocknumber parameter. The web3 function getTransaction is
looking through the blockchain and the transaction pool to find the transaction with the
provided hash. If a transaction in the accepted list is without a blocknumber, it is not
in the new Block and needs to be checked again for validity. New blocks might contain
transactions that will make some pending transactions invalid, like through the require-
ments set in the yellow paper. Those will be filtered by the client and removed from the
transaction pool. The same has to be done for the arrays with accepted and potential
transactions. To do that, the transaction is run through the above process again where
estimateGas and trace_callMany will filter invalid transactions. Those will be removed
and a signal is sent to stop systems that have been triggered through an accepted
pending transaction.

28 Chapter 4: Solutions - How to Accept Pending Transactions

Figure 4.3: Flow chart of the acceptance for pending transactions

Chapter 4: Solutions - How to Accept Pending Transactions 29

Figure 4.4: Flow chart of the acceptance for pending transactions with Parity’s trace functionality

30

Chapter 5: Conclusion 31

5 Conclusion

This work shows that the question if a vendor should accept pending transactions can
not simply be answered with yes or no. Most issues arise through the possibility of
double spending attacks and issues with the network topology. While none of those
problems is solved in this paper, some workarounds where found that can be used
under certain risks and conditions.

Accepting pending transactions requires a detailed analysis of the individual use case.
Especially expected customer behavior in form of convenience needs to be reviewed to
determine the risk levels of pending transactions. There are groups of use cases that
allow a certain degree of freedom in accepting pending transactions. This group has a
low transaction value and a high inconvenience level for the customer. Another group
allows nearly no freedom at all in accepting pending transactions. That group has a
high transaction value and a low inconvenience level. While some use cases might be
obvious, some need special attention, especially those who have high inconvenience
levels paired with high value and low inconvenience levels paired with low value.

Double spending attacks are even more effective in Ethereum then in Bitcoin and are
hard to face. Most clients implement an algorithm that overwrites old transactions, as
long as the new transaction has a higher gas price. The introduced solutions from
Karame et al for the Bitcoin network only works partially on the Ethereum network and
are hard to implement. While those might not apply, smart contracts are able to provide
solutions like deposits to keep the vendor save.

To counter the network topology issues, transactions are separated into two groups,
autonomous and non-autonomous transactions. While autonomous transactions repre-
sent any call that does not rely on other transactions, they can be verified very simply.
Non-autonomous transactions need a special algorithm to be accepted. To ensure that
all previous transactions are present, the transaction pool needs to be filtered with a
given list of transactions. The parity client provides an additional functionality to make
checking older blocks easier.

While it can be said that it is reasonably safe to accept pending transactions under
certain conditions, it is mostly linked to an unreasonably high risk. The fact that the
double spending problem is not sufficiently solved for Ethereum at the moment is making
it uneconomical for most use cases. Double spending attacks are even for low value
transactions cheap to execute. In the case that this risk is made acceptable with deposits
for instance, the created solution enables to verify non-autonomous transactions and
accept them in a pending state.

Implementations as shown in this thesis are only a short term solution and by far not

32 Chapter 5: Conclusion

enough for a real world implementation. Methods like parity’s textittrace_callMany are
crucial for developers to enable save adoption of complex business processes. Future
improvements of the Ethereum protocol should implement ways to ensure that the out-
come of pending transactions which rely on other pending transactions can be predicted
safely.

Appendix : Bibliography 33

Bibliography

[01] Alter J.; "When photographs lie", Newsweek, pp. 44-45, July 30, 1990

[02] Arnold A.; "Some Central Banks Are Exploring the Use of Cryptocurren-
cies", https://www.bloomberg.com/news/articles/2017-06-28/rise-of-digital-coins-
has-central-banks-considering-e-versions, 28.06.2017

[03] Bamert T., Decker C., Elsen L., Wattenhofer R., Welten S.; "Have a snack, pay with
bitcoins", Peer-to-Peer Computing (P2P),Conference on IEEE, 2013

[04] Bayer, Dave; Haber, Stuart; Stornetta, Scott W.; "Improving the Efficiency and
Reliability of Digital Time-Stamping", In: Capocelli R., De Saints A., Vaccaro U.
(eds) Sequences II, pp. 329-334, 1992

[05] Buterin V.; "A Next-Generation Smart Contract and Decentralized Application Plat-
form", https://github.com/ethereum/wiki/wiki/White-Paper

[06] Coinmarketcap, "CryptoCurrency Market Capitalizations",
https://coinmarketcap.com/, 31.08.2017

[07] Dwork C., Naor M.; "Pricing via processing or combatting junk mail", In 12th Annual
International Cryptology Conference, pp. 139-147, 1992

[08] Ethereum Foundation, "Go Ethereum", https://github.com/ethereum/go-ethereum,
31.08.2017

[09] Ethereum Foundation, "web3", https://web3js.readthedocs.io/en/1.0/web3.html,
31.08.2017

[10] Ethereum Foundation, "The Homestead Release",
http://www.ethdocs.org/en/latest/introduction/the-homestead-release.html,
31.08.2017

[11] Ethereum Foundation, "Merkle Patricia Trie Specification (also Merkle Patricia
Tree)", https://github.com/ethereum/wiki/wiki/Patricia-Tree, 31.08.2017

[12] ethernodes.org, "ethernodes.org", https://www.ethernodes.org/network/1,
07.08.2017

[13] Haber S., Stornetta W. S.; "How to time-stamp a digital document", Journal of
Cryptography, Vol. 3, No. 2, pp. 99-111, 1991

34 Appendix : Bibliography

[14] Karame G., Androulaki E., Capkun S.; "Two bitcoins at the price of one? double-
spending attacks on fast payments in bitcoin", IACR Cryptology ePrint Archive,
2012

[15] Kriss P.; "The Value of Customer Experience, Quantified",
https://hbr.org/2014/08/the-value-of-customer-experience-quantified, August
1st 2014, July 18th 2017

[16] Lei M.; "Exploiting Bitcoin’s Topology for Double-spend Attacks",

[17] Nakamoto S.; "Bitcoin: A Peer-to-Peer Electronic Cash System", bitcoin.org, Okto-
ber 2008, Retrieved 10. July 2017

[18] Parity Technologies, "Parity", https://github.com/paritytech/parity, 31.08.2017

[19] Parity Technologies, "Multi-call RPC #6195", https://github.com/paritytech/parity/pull/6195,
31.08.2017

[20] Podolanko John P., Ming J., Wright M.; "Countering Double-Spend Attacks on Bit-
coin Fast-Pay Transactions", IEEE Symposium on Secrurity and Privacy, 2017

[21] Rosenfeld M.; "Analysis of hashrate-based double-spending", arXiv preprint
arXiv:1402.2009, 2012

[22] Wood G.; "Ethereum: A secure decentraliesed generelised transaction ledger EIP-
150 Revision" http://gavwood.com/paper.pdf, 13.06.2017

Appendix A: Example Implementation 35

Appendix A: Example Implementation

A.1 Geth Implementation

Following is an example implementation of a Node.js module using Geth as described
in section 4.3.

1 var rpc = require(’node-json-rpc’)

2 var Web3 = require(’web3’)

3 var net = require(’net’)

4 var web3 = new Web3(’./geth.ipc’, net)

5
6 var options = {
7 port: 8545,

8 host: ’localhost’,

9 path: ’/’,

10 strict: true

11 }
12
13 var client = new rpc.Client(options)

14
15 var globalTxStorePotential = []

16 var globalTxStoreExecuted = []

17
18 //changeOwner 0xa6f9dae1

19 //set 0x60fe47b1

20
21 //address that we are scanning

22 var addressReceiving = ’0xF62965281564747ac877624A0F6A7362CFeBCD61’

23 //array of transactions that are auton

24 var autonTxArr = [’0xa6f9dae1’]

25 //array of transactions that are non-auton

26 var nonautonTxArr = {
27 ’0x60fe47b1’: [

28 {
29 to: ’0xF62965281564747ac877624A0F6A7362CFeBCD61’,

30 data: ’0xa6f9dae1’,

31 from: ’0x1554bc5bc64c9c304935ae77aa8cdd3e2ac13ae2’

32 },
33 {
34 to: ’0xF62965281564747ac877624A0F6A7362CFeBCD61’,

35 data: ’0xa6f9dae1’,

36 from: ’0x1554bc5bc64c9c304935ae77aa8cdd3e2ac13ae2’

37 }
38],

39 ’0x71af58c2’: [

40 {
41 to: ’0xF62965281564747ac877624A0F6A7362CFeBCD61’,

42 data: ’0xb7a0ebf2’,

43 from: ’0x1554bc5bc64c9c304935ae77aa8cdd3e2ac13ae2’

44 },
45 {
46 to: ’0xF62965281564747ac877624A0F6A7362CFeBCD61’,

47 data: ’0xc8b1fc03’,

48 from: ’0x1554bc5bc64c9c304935ae77aa8cdd3e2ac13ae2’

49 }
50]

51 }
52 /**

53 * Watches the Geth transaction pool for incoming transactions and filters them by given

54 * parameters. It also watches new Blocks and acts accordingly.

55 *

56 * Takes three parameters:

57 * _addressReceiving - The address to which the watched transactions are addressed to

58 * _autonTxArr - An array with the first 8 bits of the data from autonomous

59 * transactions data part

60 * _nonautonTxArr - An array of non-autonomous transactions objects. Those objects are

61 * build like: {<8bitDataPart >:[<ArrayOfDependentTransactions >]}.

62 *

63 * Example use for nonautonTxArr:

64 *

65 * {’0x60fe47b1’: [{

66 * to: ’0xF62965281564747ac877624A0F6A7362CFeBCD61’,

67 * data: ’0xa6f9dae1’,

68 * from: ’0x1554bc5bc64c9c304935ae77aa8cdd3e2ac13ae2’

69 * }]

70 * }

71 *

72 * @param {String} _addressReceiving

36 Appendix A: Example Implementation

73 * @param {Array} _autonTxArr

74 * @param {Array} _nonautonTxArr

75 */

76 exports.activateChecker = function(addressReceiving , autonTxArr , nonautonTxArr) {
77
78 addressReceiving = addressReceiving

79 autonTxArr = autonTxArr

80 nonautonTxArr = nonautonTxArr

81
82 checkNewBlock()

83
84 var subscription = web3.eth.subscribe(’pendingTransactions’, function(error, result) {
85 if (!error) {
86 //do something

87 }
88 })
89 .on("data", async function(transaction) {
90
91 //get the whole object when a tx enters the pool

92 let tx = await web3.eth.getTransaction(transaction)

93
94 //tx addressed to

95 let txto = transaction.to

96 //address of the contract we listening to

97 let variableTx = addressReceiving

98 //parse datatype to be comparable

99 let varTxNumber = parseInt(variableTx)

100 let txtoNum = parseInt(txto)

101 //is this tx addressed to me (the one we listen to)

102 if (txtoNum != varTxNumber) {
103 //check if the transaction is acceptable

104 let booly = await transactionCheck(tx, addressReceiving , autonTxArr , nonautonTxArr)

105 if (booly) {
106 //save tx to check later when a new block arrives

107 globalTxStoreExecuted.push(tx)

108 //activate weapon x here

109 console.log("Pending Transaction accepted (fire)")

110 } else {
111 //save tx to check later when new pendings are in

112 //store globaly (if a new block arrives it will be emptied by diffrent function)

113 globalTxStorePotential.push(tx)

114 console.log("Pending Transaction rejected - saved for later")

115 }
116 //check old saved transactions if their requirements are fullfilled

117 console.log("checking if stored transactions are executable")

118 for (a of globalTxStorePotential) {
119 booly = await transactionCheck(a, addressReceiving , autonTxArr , nonautonTxArr)

120 if (booly) {
121 //remove from global store

122 let index = globalTxStorePotential.indexOf(a)

123 if (index > −1)
124 globalTxStorePotential.splice(index, 1)

125 //save tx to check later when a new block arrives

126 globalTxStoreExecuted.push(tx)

127 //activate weapon x here

128 console.log("Old transaction executed (fire)")

129 } else {
130 console.log("no old transaction is executable")

131 }
132 }
133 }
134 });
135 }
136
137 /**

138 * Checks if a transaction is valid/executable. Calls the Client specific RPC call to

139 * receive the transaction pool. Takes the transaction that needs to be checked, the

140 * receiving Address, and arrays to check against

141 *

142 * @param {Object} transaction

143 * @param {String} addressReceiving

144 * @param {Array} autonTxArr

145 * @param {Array} nonautonTxArr

146 */

147 async function transactionCheck(transaction , addressReceiving , autonTxArr , nonautonTxArr) {
148
149 //autonomous transactions

150 if (autonTxArr.includes(transaction.input.substring(0, 10))) {
151 console.log("miniTx")

152
153 let estimatedGasPrice = await web3.eth.estimateGas({
154 gas: parseInt(transaction.gas),

155 data: transaction.input,

156 to: transaction.to,

157 from: transaction.from

158 })
159 if (estimatedGasPrice != transaction.gas)

160 return true

Appendix A: Example Implementation 37

161 else

162 return false

163 }
164
165 //non-autonomous transactions

166 let nonautoKeys = Object.keys(nonautonTxArr)

167 if (nonautoKeys.includes(transaction.input.substring(0, 10))) {
168 console.log("nonAutoTx discovered")

169 //tx data suggest that it is non-autonomous (can be replaced with identifier of a contract function)

170 //alayse the data :O

171 //durchlaufe den txpool and finde alle kollegen

172 let retBool = await checkTxPoolComplex Geth(nonautonTxArr[transaction.input.substring(0, 10)])

173 if (retBool)

174 return true

175 else {
176 //check if the transaction would execute anyways (needed transactions might be in the last Block)

177 //-->does only work if all required transactions are already mined

178 let estimatedGasPrice = await web3.eth.estimateGas({
179 gas: parseInt(transaction.gas),

180 data: transaction.input,

181 to: transaction.to,

182 from: transaction.from

183 })
184 if (estimatedGasPrice != transaction.gas)

185 return true

186 else

187 return false

188 }
189 }
190
191 return false

192 }
193
194 /**

195 * Iterates over the transaction pool and searches for the transactions given in the parameter

196 * @param {Array} transactions

197 */

198 function checkTxPoolComplex Geth(transactions) {
199 return client.call({
200 "jsonrpc": "2.0",

201 "method": "txpool_content",

202 "id": 1

203 }, function(err, res) {
204 if (err) {
205 console.log(err)

206 } else {
207 let booly = false

208 let key = Object.keys(transactions)

209 // f r jede transaktion in der list die zu checken is

210 for (k of key) {
211 //see if the address has pending transactions (if not break)

212 if (res.result.pending[transactions[k][’from’]]) {
213 let subKey = Object.keys(res.result.pending[transactions[k][’from’]])

214 // f r jede transaction in der pending liste der adresse die wir grade checken

215 for (s of subKey) {
216 //wenn die data gefunden wurde dann mark true und mach mit den n c h s t e n data weiter

217 if (res.result.pending[transactions[k][’from’]][s][’data’] == transactions[k][’data’]) {
218 //mark as found

219 /**

220 * TODO: actually find out if the found transaction is valid :)

221 */

222
223 booly = true

224 break

225 }
226 }
227 }
228 //wenn die data nicht gefunden wurde, gib false z u r c k

229 if (!booly)

230 return false

231 else

232 booly = false

233 }
234 return true

235 }
236 })
237 }
238
239 /**

240 * Listens to new blocks and checks if stored transactions are in there

241 * -> if a Transaction either from the potential or the executed list is not in the new Block they

242 * will be removed from the list (executed will be moved to potential) and services started by

243 * executed transactions will be stopped

244 * */

245 async function checkNewBlock() {
246 web3.eth.subscribe("newBlockHeaders", function(error, result) {
247 if (!error) {
248 //do something

38 Appendix A: Example Implementation

249 }
250 })
251 .on("data", async function(blockHeader) {
252 //get transaction by transaction hash in the list

253 for (tx of globalTxStoreExecuted) {
254 //if it has a blocknumber then remove from list

255 let rTx = await web3.eth.getTransaction(tx.hash)

256 //if the blocknumber is null its still pending

257 if (rTx.blockNumber == null) {
258 //->check if it is still valid

259 rBool = await transactionCheck(rTx, addressReceiving , autonTxArr , nonautonTxArr)

260 //if not, then stop service

261 if (!rBool) {
262 let index = globalTxStoreExecuted.indexOf(tx)

263 if (index > −1)
264 globalTxStoreExecuted.splice(index, 1)

265 //and add to potential

266 globalTxStorePotential.push(rTx)

267 console.log("Stop that chicken!!!!")

268 }
269
270 } else {
271 //the transaction is in the new Block

272 //-> remove from all internal lists

273 let index = globalTxStoreExecuted.indexOf(tx)

274 if (index > −1)
275 globalTxStoreExecuted.splice(index, 1)

276 }
277 }
278
279 //do the same with potential transactions

280 for (tx of globalTxStorePotential) {
281 //if it has a blocknumber then remove from list

282 let rTx = await web3.eth.getTransaction(tx.hash)

283 //if the blocknumber is null its still pending

284 if (rTx.blockNumber == null) {
285 //->check if it is still valid

286 rBool = await transactionCheck(rTx, addressReceiving , autonTxArr , nonautonTxArr)

287 //if not, then stop service

288 if (!rBool) {
289 let index = globalTxStorePotential.indexOf(tx)

290 if (index > −1)
291 globalTxStorePotential.splice(index, 1)

292 }
293 } else {
294 //the transaction is in the new Block

295 //->delete from list

296 let index = globalTxStorePotential.indexOf(tx)

297 if (index > −1)
298 globalTxStorePotential.splice(index, 1)

299 }
300 }
301 })
302 }

A.2 Parity Implementation

Following is an example implementation of a Node.js module using Parity as described
in section 4.3.

1 var rpc = require(’node-json-rpc’)

2 var Web3 = require(’web3’)

3 var net = require(’net’)

4 var web3 = new Web3("ws://localhost:8546")

5
6 var options = {
7 port: 8545,

8 host: ’localhost’,

9 path: ’/’,

10 strict: true

11 }
12
13 var client = new rpc.Client(options)

14
15 var globalTxStorePotential = []

16 var globalTxStoreExecuted = []

17
18 //changeOwner 0xa6f9dae1

19 //set 0x60fe47b1

20
21 //address that we are scanning

Appendix A: Example Implementation 39

22 var addressReceiving = ’0x6C3f96a0a698B66111c1d5e1520b042d263BdF5e’

23 //array of transactions that are auton

24 var autonTxArr = [’0xa6f9dae1’]

25 //array of transactions that are non-auton

26 var nonautonTxArr = {
27 ’0x60fe47b1’: [{
28 to: ’0x6C3f96a0a698B66111c1d5e1520b042d263BdF5e’,

29 data: ’0xa6f9dae1’,

30 from: ’0x6d8904bdefd08e6b829d147e6ad12aceafe83b16’

31 }]
32 }
33
34 /**

35 * Watches the Parity transaction pool for incoming transactions and filters them by given parameters.

36 * It also watches new Blocks and acts accordingly.

37 *

38 * Takes three parameters:

39 * _addressReceiving - The address the watched transactions are addressed to

40 * _autonTxArr - An array with the first 8 bits of the data from autonomous transactions data part

41 * _nonautonTxArr - An array of non-autonomous transactions objects. Those objects are build like:

42 * {8bitDataPart:[ArrayOfDependentTransactions]}.

43 *

44 * Example use for nonautonTxArr:

45 *

46 * {’0x60fe47b1’: [{

47 * to: ’0xF62965281564747ac877624A0F6A7362CFeBCD61’,

48 * data: ’0xa6f9dae1’,

49 * from: ’0x1554bc5bc64c9c304935ae77aa8cdd3e2ac13ae2’

50 * }]

51 * }

52 *

53 * @param {String} _addressReceiving

54 * @param {Array} _autonTxArr

55 * @param {Array} _nonautonTxArr

56 */

57 exports.activateChecker = function(addressReceiving , autonTxArr , nonautonTxArr) {
58
59 addressReceiving = addressReceiving

60 autonTxArr = autonTxArr

61 nonautonTxArr = nonautonTxArr

62
63 checkNewBlock()

64
65 var subscription = web3.eth.subscribe(’pendingTransactions’, function(error, result) {
66 if (!error) {
67 //do something

68 }
69 })
70 .on("data", async function(transaction) {
71
72 //get the whole object when a tx enters the pool

73 let tx = await web3.eth.getTransaction(transaction)

74
75 //tx is addressed to me

76 let txto = transaction.to

77 //address of the contract we listening to

78 let variableTx = addressReceiving

79 //parse datatype to be comparable

80 let varTxNumber = parseInt(variableTx)

81 let txtoNum = parseInt(txto)

82 //is this tx addressed to me (the one to listen to)

83 if (txtoNum != varTxNumber) {
84 //check if the transaction is acceptable

85 let booly = await transactionCheck(tx, addressReceiving , autonTxArr , nonautonTxArr)

86 if (booly) {
87 //save tx to check later when a new block arrives

88 globalTxStoreExecuted.push(tx)

89 //activate weapon x

90 console.log("Pending Transaction accepted (fire)")

91 } else {
92 //save tx to check later when new pendings are in

93 //store globaly (if a new block arrives it will be emptied by diffrent function)

94 globalTxStorePotential.push(tx)

95 console.log("Pending Transaction rejected - saved for later")

96 }
97 //check old saved transactions if there requirements are in

98 console.log("checking if stored transactions are executable")

99 for (a of globalTxStorePotential) {
100 booly = await transactionCheck(a, addressReceiving , autonTxArr , nonautonTxArr)

101 if (booly) {
102 //remove from global store

103 let index = globalTxStorePotential.indexOf(a)

104 if (index > −1)
105 globalTxStorePotential.splice(index, 1)

106 //save tx to check later when a new block arrives

107 globalTxStoreExecuted.push(tx)

108 //activate weapon x

109 console.log("Old transaction executed (fire)")

40 Appendix A: Example Implementation

110 } else {
111 console.log("no old transaction is executable")

112 }
113 }
114 }
115 });
116 }
117
118 /**

119 * Checks if a transaction is valid/executable. Calls the Client specific RPC call to receive the transaction pool.

120 * Takes the transaction that needs to be checked, the receiving Address, and arrays to check against

121 *

122 * @param {Object} transaction

123 * @param {String} addressReceiving

124 * @param {Array} autonTxArr

125 * @param {Array} nonautonTxArr

126 */

127 async function transactionCheck(transaction , addressReceiving , autonTxArr , nonautonTxArr) {
128
129 //autonomous transactions

130 if (autonTxArr.includes(transaction.input.substring(0, 10))) {
131 console.log("miniTx")

132
133 //let nonceCheck = await checkNonce(transaction)

134 let estimatedGasPrice = await web3.eth.estimateGas({
135 gas: parseInt(transaction.gas),

136 data: transaction.input,

137 to: transaction.to,

138 from: transaction.from

139 })
140 if (estimatedGasPrice != transaction.gas)

141 return true

142 else

143 return false

144 }
145
146 //non-autonomous transactions

147 let nonautoKeys = Object.keys(nonautonTxArr)

148 if (nonautoKeys.includes(transaction.input.substring(0, 10))) {
149 console.log("nonAutoTx discovered")

150 //tx data suggest that it is non-autonomous (can be replaced with identifier of a contract function)

151 //alayse the data :O

152 //durchlaufe den txpool and finde alle kollegen

153 let foundTx = await checkTxPoolComplex Parity(nonautonTxArr[transaction.input.substring(0, 10)])

154 //trace all found tx plus receivedTx

155
156 client.call({
157 "jsonrpc": "2.0",

158 "method": "trace_callMany",

159 "id": 1,

160 "params": foundTx

161 }, function(err, res) {
162 if (err) {
163 console.log(err)

164 } else {
165
166 /**

167 * trace_callMany is only implemented in the latest master branch (23.08.2017) and not officialy released

168 * no documentation available

169 *

170 * further information under https://github.com/paritytech/parity/pull/6195

171 *

172 * The following check is not tested and basically pseudo

173 */

174
175 //if the trace of the last transaction indicates that it executed succesfully

176 if (res.result[res.result.length].gasUsed != transaction.gasLimit)

177 return true

178 else

179 return false

180 }
181 })
182 return false

183 }
184 }
185
186 /**

187 * Iterates over the transaction pool and searches for the transactions given in the parameter

188 * @param {Array} transactions

189 */

190 function checkTxPoolComplex Parity(transactions) {
191 return client.call({
192 "jsonrpc": "2.0",

193 "method": "parity_pendingTransactions",

194 "id": 1

195 }, function(err, res) {
196 if (err) {
197 console.log(err)

Appendix A: Example Implementation 41

198 } else {
199 let booly = false

200 let foundTx = []

201
202 // f r jede transaktion in der pending liste

203 for (tx of res.result) {
204 for (pTx of transactions) {
205 //compare to each transaction in the transactions list

206 if ((tx[’input’].substring(0, 10) === pTx[’data’].substring(0, 10)) && (tx[’from’] === pTx[’from’])) {
207 //merke die gefundenen

208 foundTx.push(pTx)

209 //entferne aus der aktuellen liste um schleifenzeit zu verringern

210 let index = transactions.indexOf(pTx)

211 if (index > −1)
212 transactions.splice(index, 1)

213 }
214 }
215 }
216 //return array with found transactions

217 return foundTx

218 }
219 })
220 }
221
222 /**

223 * Listens to new blocks and checks if stored transactions are in there

224 * -> if a Transaction either from the potential or the executed list is not in the new Block they

225 * will be removed from the list (executed will be moved to potential) and services started by

226 * executed transactions will be stopped

227 * */

228 async function checkNewBlock() {
229 web3.eth.subscribe("newBlockHeaders", function(error, result) {
230 if (!error) {
231 //do something

232 }
233 })
234 .on("data", async function(blockHeader) {
235 //get transaction by transaction hash in the list

236 for (tx of globalTxStoreExecuted) {
237 //if it has a blocknumber then remove from list

238 let rTx = await web3.eth.getTransaction(tx.hash)

239 //if the blocknumber is null its still pending

240 if (rTx.blockNumber == null) {
241 //->check if it is still valid

242 rBool = await transactionCheck(rTx, addressReceiving , autonTxArr , nonautonTxArr)

243 //if not, then stop service

244 if (!rBool) {
245 let index = globalTxStoreExecuted.indexOf(tx)

246 if (index > −1)
247 globalTxStoreExecuted.splice(index, 1)

248 //and add to potential

249 globalTxStorePotential.push(rTx)

250 console.log("Stop that chicken!!!!")

251 }
252
253 } else {
254 //the transaction is in the new Block

255 //-> remove from all internal lists

256 let index = globalTxStoreExecuted.indexOf(tx)

257 if (index > −1)
258 globalTxStoreExecuted.splice(index, 1)

259 }
260 }
261
262 //do the same with potential transactions

263 for (tx of globalTxStorePotential) {
264 //if it has a blocknumber then remove from list

265 let rTx = await web3.eth.getTransaction(tx.hash)

266 //if the blocknumber is null its still pending

267 if (rTx.blockNumber == null) {
268 //->check if it is still valid

269 rBool = await transactionCheck(rTx, addressReceiving , autonTxArr , nonautonTxArr)

270 //if not, then stop service

271 if (!rBool) {
272 let index = globalTxStorePotential.indexOf(tx)

273 if (index > −1)
274 globalTxStorePotential.splice(index, 1)

275 }
276 } else {
277 //the transaction is in the new Block

278 //->delete from list

279 let index = globalTxStorePotential.indexOf(tx)

280 if (index > −1)
281 globalTxStorePotential.splice(index, 1)

282 }
283 }
284 })
285 }

42

Erklärung 43

Erklärung

Hiermit erkläre ich, dass ich meine Arbeit selbstständig verfasst, keine anderen als die
angegebenen Quellen und Hilfsmittel benutzt und die Arbeit noch nicht anderweitig für
Prüfungszwecke vorgelegt habe.

Stellen, die wörtlich oder sinngemäß aus Quellen entnommen wurden, sind als solche
kenntlich gemacht.

Mittweida, 01.09.2017

HSMW-Thesis

